
501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  1 

 

                                                Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SR 

NO. 

NAME PAGE 

NO. 

4.1 Introduction to Regular Expressions (Basic 

and Extended) 

2 

4.2 Pattern Matching using grep, egrep, and 

fgrep 

12 

4.3 Stream Editing with sed (search, replace, line 

deletion, insertion) 

27 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  2 

 

 

4.1 Introduction to Regular Expressions (Basic and Extended) 

A regular expression is a pattern consisting of a sequence of characters that matched 

against the text. UNIX evaluates text against the pattern to determine if the text and 

the pattern match. If they match, the expression is true and a command is executed. 

Some of the most powerful UNIX utilities , such as grep and sed, use regular 

expressions. 

Some of the most powerful UNIX utilities , such as grep and sed, use regular 

expressions. 

Regular Expression 

 A regular expression is like a mathematical expression. A mathematical expression 

is made of operands (data) and operators. A regular expression is made of atoms 

and operators. The atom specifies what we are looking for and where in the text the 

match is to be made. The operator combines atoms into complex expressions. 

 

Atoms 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  3 

 

 

                                    Single-Character Pattern Example  

The simplest atom is a single character. 

 

Dot Atom Example 

A dot matches any single character except the new line character(\n). 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  4 

 

 

                                 Class Atom Example 

The class atom defines a set of ASCII characters, any one of which may match 

any of the characters in the text. 

The character set to be used in the matching process is enclosed in brackets. 

A range of text characters is indicated by a dash (-). [a-d] 

^ is an exclusion operator. To specify any character other than a vowel, we use 

[^aeiou]. 

                                   Example of Classes 

 

The escape character (\) is used when the matching character is one of the 

other two tokens: – and ^. 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  5 

 

 

Anchors 

Anchors are atoms that are used to line up the pattern with a particular part of a 

string. 

Anchors are not matched to the text, but define where the next character in 

the pattern must be seen. 

            Operators 

We can combine atoms with operators. 

 

 

 

 

 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  6 

 

 

Example of Sequence Operator 

The sequence operator is nothing. 

This means that if a series of atoms are shown in a regular expression, it is 

implied that there is an invisible sequence operator between them. 

 

 

 

 

 

 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  7 

 

Evaluation of a String Using Sequence Operator 

 

 

Alternation Operator 

The alternation operator is used to define one or more alternatives. 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  8 

 

Matching Alternation Operators 

 

 

 

 

Repetition Operator 

The repetition operator specifies that the atom or expression immediately before the repetition 

may be repeated. 

m is a minimum number of repetitions. 

n is a maximum number of repetitions. 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  9 

 

 

Basic Repetition Forms 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  10 

 

Example of Short Form Repetition Operators 

 

       Repeating Pattern Matching 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  11 

 

 

Group Operator 

The group operator is a pair of opening and closing parentheses. 

When a group of characters is enclosed in parentheses, the next operator applies 

to the whole group. 

 

        Saving 

The save operator \(  )\ copies a matched text string to one of nine buffers for later reference. 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  12 

 

 

4.2 Pattern Matching using grep, egrep, and fgrep 

Introduction 

Till now, we discussed different filter utilities. In this chapter, we will learn 

about a very powerful filter utility known as grep. The grep stands for globally 

search a regular expression and print it. It is also known as pattern matching 

utility. Itis used to search a file for a particular pattem of characters, and 

display all records/lines that contain a pattern. The pattern that is searched in the 

file is referred to as the regular expression. 

Pattern matching utility: grep 

It is a filter utility that performs various tasks as follow: 

✓ It scans a file for the occurrences of a pattern and displays lines in which 

scanned pattern is found. 

✓ It scans a file for the occurrences of a pattern and displays lines in which 

scanned pattern does not found. 

✓ It scans files for the occurrences of a patter and displays name of files which 

contains a pattern in them. 

✓ It also displays count of lines which contains pattern. 

The general syntax for the grep command is as follows: 

syntax: 

grep [options] pattern [filename(s)] 

It is use to select and extract lines from a file and print only those lines that 

match a given patter. In the above syntax square bracket indicates optional part. 

The filename(s) and options are optional and pattern is compulsory in the grep 

command. Here, a pattern is a simple string or more complex which contains 

metacharacters, a special character for pattern matching. A pattern is also 

known as regular expression. 

Without a filename grep expects standard input. As a line is input, grep 

searches for the regular expression in the line and displays the line if it contains 

that regular expression. Execution stops when the user indicates end of input by 

pressing <ctrl+ d›. 

For example, a user supply a command at shell prompt as follow: 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  13 

 

$ grep 'unix' 

unix and shell programming < enter> 

unix and shell programming red hat linux<enter> 

unix OS< enter> 

unix OS 

<ctrl+ d> 

$ 

grep requires an expression to represent the pattern to be searched for, followed 

by one or more filenames. 

The first argument is always treated as the expression, and the other arguments 

are considered as filenames. 

Specifying regular expression: 

A regular expression is a pattern that describes a set of strings. Regular 

expressions are constructed analogously to arithmetic expressions, by using 

various operators to combine smaller expressions. 

An expression formed with some special and ordinary characters, which is 

expanded by a command, and not by the shell to match more than one string. 

A regular expression is always quoted to prevent its interpretation by the shell. 

Regular expressions can be used to specify very simple patterns of characters 

to highly complex ones. Some very simple patterns are shown in table-(a.12): 

Table-(a.12): Example of simple regular expression 

 

Regualar 

expression 

Meaning 

A It display all lines that contain character “A”. 

“Unix” It display all lines that contain pattern “Unix” 

 

       Consider the following examples: 

✓ Let us assume that the input file f1 as follow: 

 

            $ cat f1  



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  14 

 

            sco Unix 

           The red hat linux user name user 1 

              $ 

 If a user wish to display lines of file f1 which contains pattern 'Unix' then the     

command is as follow 

$grep Unix f1       

   sco Unix 

    $ 

 

✓ If you want to locate lines of file fl which contains character'' then the command is as 

follow: 

$ grep x f1  

sco Unix 

The red hat linux 

$ 

More complex regular expressions can be specified by the grep's metacharacters, always 

written in the quotes, shown in table-(b.12). 

                         

    Table-(b.12): grep metacharacters 

  

Character use 

[…] or […] It matches any one single character within a square bracket. 

^pattern It matches a pattern at the beginning of each line. 

Pattern$ It matches a pattern at the end of each line. 

.(dot) It matches any single character except new-line character. 

\(backslash) It indicates that grep should ignore the special meaning of the 

character following it in regular expression 

\<pattern It matches a pattern at the beginning of any word in a line. 

Pattern\> It matches a pattern at the end of any word in a line. 

ch* It matches zero or more occurrence of character ch. 

ch\{m\} The preceding character ch is occurred m-times. 

ch\{m,\} The preceding character ch is occurred at least m times. 

ch\{m,n\} The preceding character ch is occurredbetween m and n times. 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  15 

 

\(exp\) It matches expression exp for later referencing with \1,\2… 

 

 

Consider the following examples which use grep metacharacters: 

✓ To display lines of file f1 which contains pattern as user/ or user2 or user3 

then the command is as follow: 

$grep user [123]f1 

user name user 1 

$ 

It displays lines of file f1 which contains pattern user 1. 

✓ You can display lines which begins with pattern The then the command is as 

follow: 

$grep "The' f1 The 

red hat linux 

$ 

It displays lines of file f1 which start with pattern The. 

✓ Similarly, if you wish to match a pattern at the end of each line then the 

command is as follow: 

$grep 'Unix$’ f1 

sco Unix 

$ 

It displays lines of file f1 which end with pattern Unix. 

✓ You can use dot. to match any character in a line. For example, consider a file 

f2 as follow: 

$cat f2 

Unix and shell programming 

#blank line contains only new-line character 

red hat linux 

Unix OS 

vb.net 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  16 

 

program and process 

$ 

Here, file f2 contains blank and non-blank line. If you wish to remove blank line 

from the output then the command is: 

$grep ’.’ f2 

Unix and shell programming red 

hat linux 

Unix OS 

vb.net 

program and process 

$ 

It displays all lines which contains any character in a line except blank-line (contains 

only new line character). 

✓ You can protect special meaning of grep metacharacter using back-slash. For 

example, a user wish to display lines which contains'! character anywhere in a 

line then the command is as follow: 

$ grep ‘\.’ f2 

vb.net 

$ 

         It displays lines which contains '.’ in a line. 

✓ To display lines of file /2 which contains pattern 'program' then the command is 

as follow: 

$ grep 'program' f2 

Unix and shell programming 

program and process 

$ 

But, if you want to display lines of file f2 which contains word 'program' that means it 

is not a part of any string then the command is as follow: 

$grep ‘\<program|> ‘f2 

program and process 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  17 

 

$ 

✓ The * (asterisk) refers to the immediately preceding character. It matches 

zero or more occurrences of previous character. The pattern a* matches a null 

string, single character a* and any number of as. 

i.e.  (nothing) a aa aaa aaaa  ….. 

✓ A user can locate lines which contains characters repeated more than one 

times then the command is: 

$grep 'mm*’ f2 

Unix and shell programming 

program and process 

$ 

It locates lines in which character 'm' repeated one or more times. 

      You can display lines of file f1  which contains exact 8 characters then the    

command is as follow: 

Sgrep’^. \{8}$’ f1 

sco Unix 

$ 

To display lines of input file which contains characters between 5 and 15 then the 

command is like this: 

$grep ‘^.\{5,i5\}$’ f2 

red hat linux 

Unix Os 

vb.net 

It displays lines of file f2 that contains character between 5 and 15. 

 

✓ To display lines which contains pattern at the beginning of line would occur in the 

same line anywhere then you can use save operator with back references as follow: 

       $grep '^(.\). *\1'f2          

program and process 

 It displays lines of file f2 which contains any character occur at the beginning of line 

would also occur anywhere in the same line. The output shows that 1st character ‘p' 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  18 

 

occur in the same line therefore we get such output. 

 

✓ grep is silent and simply returns the prompt when a pattern is not found in a file. 

$grep hello f2 #No hello found 

It displays nothing that means hello pattern do not present in file f2. 

✓ grep also accept output of other command. For example, a user want to 

display filenames of working directory having permission read and write to 

owner, group and other user then the command is like this: 

  

 $ ls-l    grep ‘^rw-rw-rw-' 

-rw-rw-rw- 1 bharat bharat 43 Apr 317:25 f1 

-rw-rw-rw-2 bcal tybcasems 77 Apr 411:02 f1.In 

-rw-rw-rw-2 bcal       tybcasem5 77 Apr 411:02 12 

-rw-rw-rw- 1 bhrat bhrat 34 Jul 18 2013 f3 

 

✓ When grep is used with a series of strings, it interprets the first argument as 

the pattern and the rest as filenames along with the output. For example, 

consider a command as follow: 

$grep red hat linux 

It indicates that argument red is considered as pattern and other arguments hat 

and linux are considered as filenames. 

✓ Quote is compulsory when a pattern contains more than one word. For 

example, consider the following command: 

grep "hello world" filename 

✓ Quote is also compulsory when a pattern contains special characters that can be 

interpreted by search utility i.e. grep) not by the shell. You can generally use 

either single or double quotes, but if command substitution or variable 

evaluation is involved, you must use double quotes. 

Consider an example which contains variable substitution in double-quote as 

follow: 

$a=1 

$grep "$a" f1 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  19 

 

It prints all lines of file f1 that contains 1. Consider another example which uses 

command substitution in double-quote as follow: 

$grep "echo if" f1 

It prints all lines of file f1 which contains pattern if in line. 

Options： 

The grep utility can be used with many options, a few of which are discussed 

below: 

(1)-c (count): It prints count of matching lines for each input file. 

✓ For example, a command is follow: 

$grep -c'.’ f2 

5 

$ 

It counts all non-empty lines of file f2. 

✓ Consider another command as follow: 

$grep -c '^$' f2 2 

$ 

It counts all empty lines (consist of only new-line character) of file f2. 

(2)-l (list): It displays only the names of files in which a pattern has been found. 
    

   For example, consider a command as follow: 

$grep -l’.’ * 

It displays names of all files of current directory that contains any character in 

 

✓ You can print names of all files of current directory that contains pattern echo 

anywhere in a file then the command is as follow: 

      $grep-l ‘echo' * 

 

(3) -n (number): It can be used to display the line numbers containing the pattern, 

along with the lines. 

   If you want to print line number before matched line then the command is as follow: 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  20 

 

$ grep-n' Unix f2 

1: Unix and shell programming 

5:Unix OS 

$ 

It prints two column output, each column delimited by colon (;). In the 1st column, 
line number will be displayed and 2nd column contains content of matched lines. 

✓ You can give more than one filename as input files as follow: 

$ grep-n 'Unix' f1 f2 

f1: 1:sco Unix 

f2:1: Unix and shell programming 

f2:5: Unix OS 

$ 

It prints output in three columns, each column delimited by colon (:). The 1st 
field contains name of file, 2nd column contains line number and last column contains 
content of matched line. 

(4). -v (inverse): The -v option select all but not the lines containing the pattern. 

✓ Sometimes, a user is interested only on unmatched lines then he used -v 

option as follow: 

$grep – cv ’^$' f2 

5 

$ 

It counts all non-empty lines (contains only new-line character) of file f2. 

✓ Consider another command as follow: 

$grep -v 'Unix' f1 

The red hat linux 

user name user1 

$ 

It displays lines of file f1 which do not contains Unix pattern. 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  21 

 

  

 (5)-i (ignore): It ignores case in pattern matching. 

✓ For example, you want to print lines that contains pattern unix in any case 
then the command is as follow: 

                $grep -i 'unix' f1 

                sco Unix 

                   $  

              It displays lines of file f1 having unix pattern in any case. 

   (6) -h (hide): It omits filenames when handling multiple files. 

✓ For example, consider an example as follow: 
               $grep -h 'Unix' f1 f2  

           sco Unix 

           Unix and shell programming Unix OS 

            $ 

It displays lines of files f1 and f2 which contains pattern Unix. It does not display filename 

before, matched line i.e. it hides name of a file. 

         (7)-e Reg Exp : You can specify regular expression with this option. You can use 
this option multiple times. 

✓ For example, you want to locates lines of file which contains patter either 
Unix or linux then the command is as follow: 

           $ grep-e 'Unix'-e 'linux' f2  

           Unix and shell programming  

          red hat linux 

         Unix OS 

           $ 

          (8) -f fname: A list of strings to be match is stored in file name. 

✓ For example, consider a patfile as follow: 

           $ cat patfile Unix linux 

             $ 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  22 

 

It contains list of pattern in a separate lines. Now, we want to locate lines of file f1 

that contains any of the pattern given in file patfile then the command is as follow: 

       $ grep -f patfile f1 

     sco Unix 

    The red hat linux 

     $ 

 

Grep family 

There is a small family of grep utility which includes egrep and fgrep. These two 

utilities operate in a similar way to grep but each has its own particular usage, and 

there are small differences in the way that each work. 

Both utilities search for specific pattern in either the standard input stream or a series 

of input files supplied at command-line. 

 

egrep 

egrep stands for extended grep. It was invented by Alfred Aho. It extends grep's 

pattern-matching capabilities in two major ways. 

✓ It admits alternates 

✓ It enables regular expressions to be bracketed/grouped using the pair of 

parenthesis (i.e. (...)), also known as factoring. 

It offers all the options and regular expression metacharacters of grep, but its most 

useful feature is the facility to specify more than one pattern for search. While grep 

uses some more characters that are not recognized by egrep, egrep includes some 

additional extended metacharacters not used by either grep or sed utilities that are 

given in table-(c.12). 

 

Expression Meaning 

ch+ It matches one or more occurrence of character ch. 

ch? It matches zero or one occurrence of character ch. 

exp1\exp2 

(x1\x2)x3 

It matches expression exp1 or exp2. 

It matches expression x1x3 or x2x3. 

 

Let us consider the following examples which uses extended metacharacter: 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  23 

 

✓ To display lines which contains any character that occur one or more time 

then the command is as follow: 

 

$egrep m+ f2 

Unix and shell programming 

program und process 

$ 

           It prints lines of file f2 that contains character 'm' occur one or more times. 

✓ If you want to locates lines which contains one of more patterns then you can 

use alternate metacharacter as follow: 

 $egrep 'Unix\linux' f1 

sco Unix 

The red hat linux 

   $ 

It displays lines of file f1 which contains pattern either Unix or linux. 

✓ Sometimes, you want to display lines which contains either software or 

hardware then the command is as follow: 

        $egrep "(soft| hard) ware" f1 

 

NOTE: In grep, if a pattern contains some special characters then it must be quoted. 

-f option: Storing pattern in a file 

egrep provides a facility to take patterns from a file. If there are number of pattern that 

you have to match; egrep offers the -f (file) option to take such patterns from the file. 

For example, a file patfile contains patterns in which each pattern is 

delimited by'|’ as follow: 

$ cat patfile 

Unix linux 

$ 

Now, you can execute egrep with the -f option in this way: 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  24 

 

$egrep -f patfile f1 

sco Unix 

The red hat linux 

$ 

Here, the command takes the pattern/expression from file patfile and display matched 

lines of file f1. 

 

 fgrep 

fgrep stands for fixed/fast grep. The fgrep utility can normally only search for fixed 

strings i.e. character string without embedded metacharacters. However, some 

implementations of the fgrep utility allow it to be used with a few metacharacters - 

check your version to make sure. fgrep accepts multiple patterns, both from the 

command line and a file, but unlike grep and egrep, does not accept regular 

expressions. So, if the pattern to be search is a simple string, or a group of them, 

 

  fgrep is recommended. It is arguably faster than grep and egrep, and should be 

used when using fixed strings. 

Alternative patterns in fgrep are specified by separating one pattern from another 

using the new-line character. This is unlike in egrep, which uses the '|’ to delimit 

two expressions. You may either specify these patterns in the command line itself, or 

store them in a file. 

✓ For example consider a file patfile which contains list of pattern delimited by 

new-line character as follow: 

$ cat patfile 

Unix 

linux 

$ 

We can use this file using -f option as follow: 

$fgrep -f patfile f1 

sco Unix 

The red hat linux 

$ 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  25 

 

✓ You can achieved same output without using file patfile by supplying patterns 

at command-line as follow: 

$fgrep ‘Unix <enter> 

> linux'f1 < enter> 

sco Unix 

The red hat linux 

$ 

✓ The disadvantage with grep family is that none of them has separate facilities to 

identify fields. This limitation is overcome by awk utility. 

Limitation of grep family: 

The grep family has following limitation. 

✓   It cannot be used to add, delete or change a line. 

✓ It cannot be used to print only part of a line. 

✓ It cannot read only part of a file. 

It cannot select a line based on the contents of the previous or the next line. There is 

only one buffer, and it holds only the current line. 

Following table-(d.12) shows the atoms used in regular expression by grep family: 

Table-(d.12):Atoms used by grep family 

 

Atoms grep fgrep egrep 

Character    

Dot  X  

Class  X  

Anchors  X  

Back Reference  X  

 

 

As shown in table-(d.12), both grep and egrep utilities allows all the atoms in regular 

expression whereas fgrep utility supports only character atom. 

Similarly, table-(e. 12) shows the operators used in regular expression by grep 

family: 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  26 

 

Table-(e.12): Operators used by grep family 

 

Operators grep fgrep egrep 

Sequence    

Repetition  X  

Altermation X X  

Group X X  

Save  X  

 

Table-(e.12) indicates that grep utility supports sequence, repetition and save 

operators, egrep utility supports all operators but fgrep utility supports only 

sequence operator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  27 

 

  4.3 Stream Editing with sed (search, replace, line deletion, insertion) 

The SED command (short for Stream Editor) is one of the most powerful tools for text 

processing in Linux and Unix systems. It's commonly used for tasks like search and 

replace, text transformation, and stream editing. 

Sed Command Syntax: 

The basic syntax for using the SED command in Linux is: 

sed [OPTIONS] 'COMMAND' [INPUTFILE...] 

where, 

Commonly Used SED Command Options 

Below are some of the most frequently used SED command options, let's check them out: 

 

Option Description 

-i Edit the file in-place (overwrite) 

-n Suppress automatic printing of lines. 

-e Allows multiple commands. 

-f Reads sed commands from a file. 

-r Use extended regular expressions. 

 

Here are some basic SED commands that will help you get started with text manipulation. 

Consider the below text file as an input. 

cat > geekfile.txt 

unix is great os. unix is opensource. unix is free os. 

learn operating system. 

https://www.geeksforgeeks.org/linux-unix/linux-commands/


501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  28 

 

unix linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

1. Sample Commands 

Replacing or substituting string: Sed command is mostly used to replace the text in a file. 

The below simple sed command replaces the word "unix" with "linux" in the file. 

sed 's/unix/linux/' geekfile.txt 

Output: 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

Here the "s" specifies the substitution operation. The "/" are delimiters. The "unix" is the 

search pattern and the "linux" is the replacement string. By default, the sed command 

replaces the first occurrence of the pattern in each line and it won't replace the second, 

third...occurrence in the line. 

 

 

2. Replacing the nth Occurrence of a Pattern in a Line 

To replace only the nth occurance of a word in a line, use the following syntax: 

 sed 's/old_word/new_word/n' filename 

Use the '/1', '/2' etc. flags to replace the first, second occurrence of a pattern in a line. The 

below command replaces the second occurrence of the word "unix" with "linux" in a 

line. 

sed 's/unix/linux/2' geekfile.txt 

Output: 

unix is great os. linux is opensource. unix is free os. 

learn operating system. 

unix linux which one you choose. 

unix is easy to learn.linux is a multiuser os.Learn unix .unix is a powerful. 

 

3. Replacing all the Occurrence of the Pattern in a Line 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  29 

 

Here, we will use the g flag to replace all the occurances of a pattern in a line. Let's check 

out the syntax below: 

sed 's/old_word/new_word/g' filename 

The substitute flag /g (global replacement) specifies the sed command to replace all the 

occurrences of the string in the line. 

sed 's/unix/linux/g' geekfile.txt 

Output: 

linux is great os. linux is opensource. linux is free os. 

learn operating system. 

linux linux which one you choose. 

linux is easy to learn.linux is a multiuser os.Learn linux .linux is a powerful. 

 

4. Replacing from nth Occurrence to all Occurrences in a Line 

Use the combination of /1, /2 etc and /g to replace all the patterns from the nth occurrence 

of a pattern in a line. The following sed command replaces the third, fourth, 

fifth... "unix" word with "linux" word in a line. 

sed 's/unix/linux/3g' geekfile.txt 

Output: 

unix is great os. unix is opensource. linux is free os. 

learn operating system. 

unix linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn linux .linux is a powerful. 

 

5. Parenthesize First Character of Each Word 

This sed example prints the first character of every word in parenthesis. 

echo "Welcome To The Geek Stuff" | sed 's/\(\b[A-Z]\)/\(\1\)/g' 

Output: 

(W)elcome (T)o (T)he (G)eek (S)tuff 

 

6. Replacing String on a Specific Line Number 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  30 

 

You can restrict the sed command to replace the string on a specific line number. An 

example is 

sed '3 s/unix/linux/' geekfile.txt 

Output: 

unix is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

The above sed command replaces the string only on the third line. 

 

7. Duplicating the Replaced Line with /p flag 

The /p print flag prints the replaced line twice on the terminal. If a line does not have the 

search pattern and is not replaced, then the /p prints that line only once. 

sed 's/unix/linux/p' geekfile.txt 

Output: 

linux is great os. unix is opensource. unix is free os. 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

 

8. Printing Only the Replaced Lines 

Use the -n option along with the /p print flag to display only the replaced lines. Here the -

n option suppresses the duplicate rows generated by the /p flag and prints the replaced 

lines only one time. 

sed -n 's/unix/linux/p' geekfile.txt 

Output: 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  31 

 

linux is great os. unix is opensource. unix is free os. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

If you use -n alone without /p, then the sed does not print anything. 

 

9. Replacing String on a Range of Lines 

You can specify a range of line numbers to the sed command for replacing a string. 

sed '1,3 s/unix/linux/' geekfile.txt 

Output: 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 

Here the sed command replaces the lines with range from 1 to 3. Another example is 

sed '2,$ s/unix/linux/' geekfile.txt 

Output: 

unix is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful 

Here $ indicates the last line in the file. So the sed command replaces the text from second 

line to last line in the file. 

10. Deleting Lines from a Particular File 

SED command can also be used for deleting lines from a particular file. SED command is 

used for performing deletion operation without even opening the file 

Examples: 

1. To Delete a particular line say n in this example 

Syntax: 

sed 'nd' filename.txt 

 



501:  L inux  Oper at ing  Syst em  
Unit  4 :  Advanced  Text  Process ing  
Tools  

 

  

TYBCA (Sem –  5 )  32 

 

Example: 

sed '5d' filename.txt 

2. To Delete a last line 

Syntax: 

sed '$d' filename.txt 

3. To Delete line from range x to y 

Syntax: 

sed 'x,yd' filename.txt 

 

Example: 

sed '3,6d' filename.txt 

4. To Delete from nth to last line 

Syntax: 

sed 'nth,$d' filename.txt 

 

Example: 

sed '12,$d' filename.txt 

 

5. To Delete pattern matching line 

Syntax: 

sed '/pattern/d' filename.txt 

 

Example: 

sed '/abc/d' filename.txt 

 

 


